Oxoguanine glycosylase 1 (OGG1) protects cells from DNA double-strand break damage following methylmercury (MeHg) exposure.
نویسندگان
چکیده
Methylmercury (MeHg) is a potent neurotoxin, teratogen, and probable carcinogen, but the underlying mechanisms of its actions remain unclear. Although MeHg causes several types of DNA damage, the toxicological consequences of this macromolecular damage are unknown. MeHg enhances oxidative stress, which can cause various oxidative DNA lesions that are primarily repaired by oxoguanine glycosylase 1 (OGG1). Herein, we compared the response of wild-type and OGG1 null (Ogg1(-/-)) murine embryonic fibroblasts to environmentally relevant, low micromolar concentrations of MeHg by measuring clonogenic efficiency, cell cycle arrest, DNA double-strand breaks (DSBs), and activation of the DNA damage response pathway.Ogg1(-/-) cells exhibited greater sensitivity to MeHg than wild-type controls, as measured by the clonogenic assay, and showed a greater propensity for MeHg-initiated apoptosis. Both wild-type and Ogg1(-/-) cells underwent cell cycle arrest when exposed to micromolar concentrations of MeHg; however, the extent of DSBs was exacerbated in Ogg1(-/-) cells compared with that in wild-type controls. Pretreatment with the antioxidative enzyme catalase reduced levels of DSBs in both wild-type and Ogg1(-/-) cells but failed to block MeHg-initiated apoptosis at micromolar concentrations. Our findings implicate reactive oxygen species mediated DNA damage in the mechanism of MeHg toxicity; and demonstrate for the first time that impaired DNA repair capacity enhances cellular sensitivity to MeHg. Accordingly, the genotoxic properties of MeHg may contribute to its neurotoxic and teratogenic effects, and an individual's response to oxidative stress and DNA damage may constitute an important determinant of risk.
منابع مشابه
Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions.
7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress leve...
متن کاملNEIL1 excises 3′ end proximal oxidative DNA lesions resistant to cleavage by NTH1 and OGG1
Base excision repair is the major pathway for the repair of oxidative DNA damage in human cells that is initiated by a damage-specific DNA glycosylase. In human cells, the major DNA glycosylases for the excision of oxidative base damage are OGG1 and NTH1 that excise 8-oxoguanine and oxidative pyrimidines, respectively. We find that both enzymes have limited activity on DNA lesions located in th...
متن کاملExcision of 8-oxoguanine within clustered damage by the yeast OGG1 protein.
Clustered damages are formed in DNA by ionising radiation and radiomimetic anticancer agents and are thought to be biologically severe. 7,8-dihydro-8-oxoguanine (8-oxoG), a major DNA damage resulting from oxidative attack, is highly mutagenic leading to a high level of G.C-->T.A transversions if not previously excised by OGG1 DNA glycosylase/AP lyase proteins in eukaryotes. However, 8-oxoG with...
متن کاملAssociation between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia
Previous studies have demonstrated that oxidative stress‑induced lung injury is involved in the occurrence and developmental process of bronchopulmonary dysplasia (BPD). The present study assessed whether oxidative DNA damage occurs in the early stages of hyperoxia‑induced BPD in neonatal rats and evaluated the expression and localization of the DNA repair gene, 8‑oxoguanine DNA glycosylase 1 (...
متن کاملDNA repair gene polymorphisms and bladder cancer susceptibility in a Turkish population.
BACKGROUND Occupational exposure and life style preferences, such as smoking are the main known environmental susceptibility factors for bladder cancer. A growing list of chemicals has been shown to induce oxidative DNA damage. Base excision repair (BER) genes (X-ray repair cross complementing 1, XRCC1 and human 8-oxoguanine DNA glycosylase 1, OGG1) may play a key role in maintaining genome int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 128 1 شماره
صفحات -
تاریخ انتشار 2012